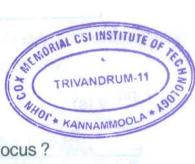


Reg.	No.	***************************************

Seventh Semester B.Tech. Degree Examination, April 2015 (2008 Scheme) 08.701 - CONTROL SYSTEMS (E)

Time: 3 Hours


Max. Marks: 100

PART-A

Answer all questions.

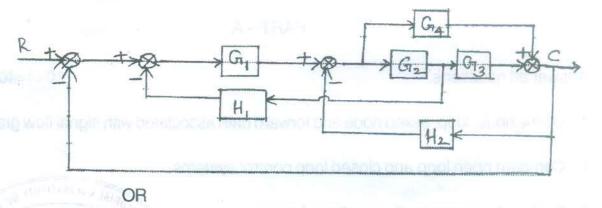
(10×4=40 Marks)

- 1. Define node, loop, mixed node and forward path associated with signal flow graph.
- Compare open loop and closed loop control systems.
- 3. Explain the principle of operation of gyroscope.
- 4. Explain Mason's gain formula.
- 5. What is the effect of adding poles and zeros on root locus?
- 6. Explain the standard test signals used for time domain analysis.
- Define static error constants. Determine the value of error constants for a type I second order system.
- 8. State and explain Nyquist stability criterion.
- 9. Derive the transfer function of electrical lead network.
- 10. Explain the significance of gain margin and phase margin.

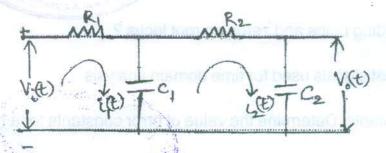
8

12

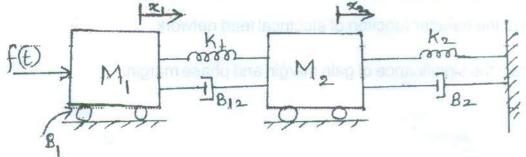
8


12

PART-B


Answer any one full question from each Module.

Module - I


- 11. a) Derive the transfer function of an armature controlled d.c. motor.
 - b) Determine the transfer function $\frac{C(s)}{R(s)}$ by applying block, diagram reduction technique.

12. a) Find $\frac{V_o(s)}{V_i(s)}$

b) Write the differential equations governing the mechanical system shown. Draw the force voltage analogous circuit and verify by writing mesh equations.

Module - II

13. a) Determine the stability of the system whose characteristic equation is $s^5 + s^4 + 2s^3 + 2s^2 + 3s + 5 = 0$ using Routh's stability criteria.

8

12

b) The closed loop transfer function of a unity feedback system is given by

$$G(s) = \frac{K}{s(s+10)}$$
. Determine the gain k so that the system would have a

damping ratio of 0.5. For this value of K, determine settling time, peak time, delay time, peak overshoot and time for peak overshoot for unit step input.

OR

14. For a unity feedback system, open loop transfer function is given by

G(s) =
$$\frac{K}{s(s+2)(s^2+6s+25)}$$

- a) Sketch the root locus for $0 < k < \infty$.
- b) At what value of K, the system becomes unstable?
- c) At this point of instability determine the frequency of oscillation of the system.
- d) Find k such that the system has a damping factor of 0.707.

20

Module - III

 a) Determine the stability of the closed loop unity feedback system using Nyquist stability criterion for the system whose open loop transfer function is

$$G(s) = \frac{1}{s^2 (1+s) (1+2s)}.$$

15

b) Sketch polar plot of $G(s) = \frac{1}{(1+sT_1)(1+sT_2)}$.

5

OR

16. a) The open loop transfer function of a unity feedback system is given by

$$G(s) = \frac{10 \ (s+3)}{s \ (s+2) \ (s^2+4s+100)} \, . \, \, \text{Draw Bode plot and find the gain margin and}$$
 phase margin.

15

b) Explain minimum phase and nonminimum phase systems.

5